Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Pulsating aurora, which consists of diffuse patches blinking on and off, is caused by pitch angle scattering of radiation belt electrons into the loss cone by lower-band chorus waves. Understanding the drivers of pulsating aurora is important as it is a long-lasting and widespread phenomenon, accounting for significant energy transfer from the solar wind into the ionosphere. Substorm injections, which transport electrons from the magnetotail into the inner magnetosphere, are one source of electrons in this region. Injections have been observed simultaneously with pulsating aurora during conjunctions between ground cameras and satellites. In addition, previous work has also shown that substorms can enhance chorus activity (the fundamental process that produces pulsating aurora), providing a mechanism linking substorms to pulsating aurora. To further study this connection, we used the Van Allen Probes and all-sky cameras to look at events where pulsating aurora and substorm injections were observed at different locations in Magnetic Local Time (MLT), rather than focusing only on conjunctions. To make this comparison, we calculated the drift rate of electrons originating from observed injections and projected their motion forward in time until their Magnetic Local Time was the same as the ground camera. When the electrons are located at the same MLT as the ground camera, the pulsating aurora they cause would most likely occur in the field of view of the camera. We compared the time drifting substorm-injected particles arrived at the MLT of the camera to when pulsating aurora was observed. We found several instances where the initiation or intensification of pulsating aurora was accompanied by the arrival of substorm-injected electrons. This observation gives further evidence that pulsating aurora can be enhanced by or occur after substorm injections.more » « less
-
Pulsating aurora are common diffuse-like aurora. Studies have suggested that they contain higher energy particles than other types and are possibly linked to substorm activity. There has yet to be a quantitative statistical study of the variation in pulsating aurora energy content related to substorms. We analyzed the inverted energy content from 53 events using the Poker Flat Incoherent Scatter Radar. To reduce the uncertainty, we split the differential energy flux into low and high energy using the limit of 30 keV. We also analyzed the lower altitude boundary of the electron density profile, characterized by a number density of > 1 0 10 m −3 , and used this as a proxy for high energy. We compared both of these to magnetic local time (MLT), AE index, and temporal proximity to substorm onset. There was a slight trend in MLT, but a much stronger one in relation to both substorm onset and AE index. For higher AE and closer to onset the total energy flux and flux above 30 keV increased. In addition, this higher energy remained enhanced for an hour after substorm onset. Our results confirm the high energy nature of pulsating aurora, demonstrate the connection to substorms, and imply their importance to coupling between the magnetosphere and atmosphere.more » « less
-
Abstract Few remote sensing or in‐situ techniques can measure winds in Earth's thermosphere between altitudes of 120 and 200 km. One possible approach within this region uses Doppler spectroscopy of the optical emission from atomic oxygen at 558 nm, although historical approaches have been hindered in the auroral zone because the emission altitude varies dramatically, both across the sky and over time, as a result of changing characteristic energy of auroral precipitation. Thus, a new approach is presented that instead uses this variation as an advantage, to resolve height profiles of the horizontal wind. Emission heights are estimated using the Doppler temperature derived from the 558 nm emission. During periods when the resulting estimates span a wide enough height interval, it is possible to use low order polynomial functions of altitude to model the Doppler shifts observed across the sky and over time, and thus reconstruct height profiles of the horizontal wind components. The technique introduced here is shown to work well provided there are no strong horizontal gradients in the wind field. Conditions satisfying these caveats do occur frequently and the resulting wind profiles validate well when compared to absolute in‐situ wind measurements from a rocket‐borne chemical release. While both the optical and chemical tracer techniques agreed with each other, they did not agree with the HWM‐14 horizontal wind model. Applying this technique to wind measurements near the geomagnetic cusp footprint indicated that cusp‐region forcing did not penetrate to atmospheric heights of 240 km or lower.more » « less
An official website of the United States government
